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‘tinkertoy’-approach to parallel application development. By providing efficient implementations of 
basic services commonly needed by applications, toolkits allow application developers to benefit 
from others’ research, compare algorithms and save time for their own development. Unlike large 
frameworks, toolkits provide these services with light-weight interfaces and little or no restriction 
on application data structures, making them easy to use in both new and existing applications. In this 
paper, we describe features of effective toolkit design, using the Zoltan parallel, dynamic data 
management toolkit as an example. 

Keywords: parallel computing; parallel programming; software engineering; software 
framework; load balancing. 

Reference to this paper should be made as follows: Devine, K. and Hendrickson, B. (2005) 
‘Tinkertoy parallel programming: a case study with Zoltan’, Int. J. Computational Science and 
Engineering, Vol. 1, Nos. 2/3/4, pp.64–72. 

Biographical notes: Karen Devine earned her BS in Computer Science from Wilkes College, 
and her MS and PhD in Computer Science from Rensselaer Polytechnic Institute. She is a 
principal member of the technical staff in the Discrete Algorithms and Mathematics Department at 
Sandia National Laboratories in Albuquerque, New Mexico. She is the principal investigator for 
Zoltan, a toolkit of parallel data management and load-balancing algorithms. Her research 
interests include parallel algorithms, load balancing, adaptive finite element methods and software 
design. 

Bruce Hendrickson received degrees in Math and Physics from Brown University, followed by 
a PhD in Computer Science from Cornell. He has been at Sandia National Laboratories in 
Albuquerque for the past 14 years where he holds the title of distinguished Member of technical 
staff and manages the Computational Math and Algorithms Department. He also has an 
appointment in the Computer Science Department at the University of New Mexico.  
He is an Editor of several leading journals in scientific and parallel computing and has helped to 
organise numerous international meetings. His research interests include combinatorial scientific 
computing, parallel algorithms, linear algebra, graph algorithms, scientific software and data 
mining. 

 

1 Introduction 

Developing software for parallel scientific simulations is 
always a challenge. Parallel simulations require a wide 
range of capabilities, from meshing tools and data 
managers to solvers and visualisation tools. Dynamic and/or 
adaptive simulations present an even greater challenge, as 
load redistribution, synchronisation and more complicated 
data structures must be managed. High parallel 
performance is always desired, requiring expertise by the 
software developer in efficient algorithm design and 
implementation. Development schedules are often tight. 
And parallel architectures change with each new 
generation of computers, requiring portability of codes and 
providing a ‘moving target’ for performance optimisation.  

In such an environment, which is the best approach for the 
development of complex adaptive software? 

Several approaches for parallel software development 
exist, each with its own advantages and disadvantages. 
Application developers could do all the software 
development themselves. This option is attractive because 
it gives developers total control of the software. This 
control, however, comes at a severe price. Do-it-yourself 
programming is time consuming, as much effort is spent 
writing code that is often available elsewhere – reinventing 
the wheel, so to speak. Moreover, developers must spend 
much of that time writing code in areas outside their areas 
of expertise and interest, resulting in nonexpert and, quite 
possibly, less efficient implementations of many parts of 
the software. 
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Software frameworks provide a second option for 
software development. A framework is an application or 
library providing a wide range of services and data 
structures for a specific class of applications; application 
developers use the framework’s data structures and services 
in constructing their simulations. SIERRA (Edwards, 2002) 
and Overture (Brown et al., 1997) are examples of 
successful adaptive simulation frameworks. Such 
frameworks provide many capabilities in one package, 
which is a significant advantage to applications that need 
all the capabilities. However, frameworks typically are large 
and can have substantial overhead, which is a disadvantage 
to applications needing only a small subset of a 
framework’s capabilities. Frameworks are also difficult to 
add to existing applications; instead, existing applications 
must be incorporated like new applications into the 
framework. To use a framework, application developers 
must learn both its interfaces and data structures, which is 
often a time-consuming task. In addition, framework use 
makes application developers highly dependent on the 
framework’s developers, perhaps causing an undesirable loss 
of control in terms of enhancements and schedules for the 
application developers. 

As an alternative, we advocate a toolkit- or  
‘tinkertoy’-approach to software development. The original 
tinkertoy, made for children by Hasbro, is a set of simple 
wooden pieces that can be interconnected in different ways 
to make surprisingly complex structures and machines. 
Similarly, in tinkertoy software development, applications 
are constructed of small, simple software parts with 
flexible, easy-to-use interfaces. These simple software parts 
are toolkits – libraries containing basic services commonly 
needed by applications. While frameworks provide all data 
structures and services for a specific type of application, 
toolkits provide only a small set of related services that 
can be used as parts of many different applications. 
Application developers can put together these services to 
create a larger application. For example, an application 
could be constructed from an adaptive meshing  
toolkit (e.g., Pyramid (Norton et al., 2001) and AOMD 
(Remacle et al., 2002, 2003)), a dynamic load-balancing 
toolkit (e.g., Zoltan (Devine et al., 1999a, 1999b, 2002), 
DRAMA (Maerten et al., 1999) and ParMETIS  
(Karypis et al., 2003)), a linear and non-linear solver library 
(e.g., Trilinos (Heroux et al., 2003; Heroux and 
Willenbring, 2003), Aztec (Hutchinson et al., 1995) and 
PETSc (Balay et al., 1997, 2002)) and some visualisation 
tools (e.g., VTK (Schroeder et al., 2003)). Application 
developers, then, can concentrate on the simulation details 
in which they are most interested (e.g., physics or 
engineering). 

This toolkit approach has a number of advantages. 
Because they typically provide a smaller number of basic 
services, toolkits are less cumbersome than frameworks; 
application developers can select and use only the 
functionality they need. Because toolkits generally use  
 
 

library interfaces and private data structures, developers 
can incorporate them easily into both new and existing 
applications. Application developers need to learn only the 
toolkit interfaces, rather than all its internal data structures, 
so start-up time is shorter than with framework use.  
Well-designed toolkits can, like tinkertoys, be easily 
hooked together to build larger and more complex 
functionality, beyond the scope of any single library. And 
since most toolkits are developed by experts in the toolkits’ 
capabilities, application developers benefit in terms of both 
development time and algorithmic efficiency by using 
toolkits. 

Toolkits do, however, have some of the same trust and 
dependence issues as frameworks, although to a lesser 
degree. There are often competing toolkits providing similar 
functionality, so an application developer can switch if the 
need arises. Also, the simple interfaces associated with  
well-designed toolkits facilitate replacement if necessary. 
Toolkit users are dependent upon toolkit developers to 
provide correct algorithms and customer support.  
Open-source distribution used by many toolkits can 
increase reliability and trust by allowing users to inspect the 
implementations and by providing a broad testing community 
for the software. Toolkits also have some memory and 
performance overhead owing to separation of toolkit data 
structures from the applications, but with careful design, 
these costs can be kept acceptably low. 

There are, of course, hybrids of all these strategies.  
The Common Component Architecture (CCA), for  
example, provides interfaces that allow plug-and-play 
interoperability of components, in line with the toolkit 
philosophy (Armstrong et al., 1999). The components, 
however, are launched within a framework (e.g., Ccaffeine 
(Allan et al., 2002)) that manages the components’ 
operation. For this paper, however, we will focus on 
straightforward toolkit usage for parallel computing. 

Is it really possible to build complex applications out of 
tinkertoys? It is widely accepted that linear solvers can be 
encapsulated as libraries, but what about the needs of 
complex, adaptive parallel applications like adaptive mesh 
calculations or particle simulations? It is often presumed that 
these kinds of dynamic applications require such intricate 
control over data structures that toolkits cannot easily be 
applied. 

One goal of this paper is to give affirmative answers 
to these questions. We believe that even complicated, 
adaptive computations can be constructed efficiently and 
effectively from simple tools. As a second goal, the paper 
describes our attempt to instantiate this vision through 
Zoltan – a toolkit for adaptive parallel computation built 
with the tinkertoy philosophy. Finally, through Zoltan we 
have been exploring the possibilities and limits of tinkertoys. 
Specifically, what types of functionality can be delivered 
through application-independent toolkits, and what can be 
provided only by applications or frameworks? This paper 
reports on our current understanding of this important issue. 
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2 Zoltan overview 

The Zoltan toolkit is a collection of data 
management services for parallel unstructured, adaptive 
and dynamic applications, available as open-source software 
from http://www.cs.sandia.gov/Zoltan. It is designed to 
simplify the load balancing, data movement, unstructured 
communication and memory usage difficulties that arise in 
dynamic applications such as adaptive finite element 
methods, particle methods and multiphysics simulations. 
Zoltan’s data-structure neutral design allows it to be 
used by a wide range of applications without imposing 
restrictions on application data structures. Its object-based 
interface provides a simple and inexpensive way for 
application developers to use the library and researchers to 
make new capabilities available under a common interface. 

As we detail in the subsequent sections of this paper, 
Zoltan provides tools that help application developers 
without imposing strict frameworks on them. For example, 
it includes parallel partitioning algorithms and data 
migration tools that help redistribute data to reflect, for 
example, changing processor workloads resulting from 
creation of elements in adaptive finite element methods. 
Zoltan also includes distributed data directories, dynamic 
memory-debugging tools and unstructured communication 
services that enable applications to perform complicated 
communication using only a few simple primitives. Zoltan 
is used in a variety of applications, including contact 
detection and crash simulations (Brown et al., 2003; Koteras 
and Gullerud, 2003), adaptive finite element methods 
(Edwards, 2002; Boucheron et al., 2002; Lawrence et al., 
2003), parallel circuit simulations (Hutchinson et al., 2002), 
multiphysics simulations (Salinger et al., 1996) and linear 
solvers and preconditioners (Heroux et al., 2003; Heroux 
and Willenbring, 2003). 

3 The promise and limitations of toolkits 

The success of tinkertoy computing depends on a number of 
software design features: 

• functionality: toolkits must solve problems that appear 
in multiple applications 

• portability: toolkits must be portable across 
multiple parallel platforms 

• interfaces: toolkits’ software interfaces should be easy 
to use 

• added value: toolkits should give application 
developers greater performance and flexibility 

• low overhead: the overhead owing to toolkit use must 
be small, both in memory and in runtime 

• support: toolkit developers should help application 
developers use their toolkits effectively. 

Each of these issues provides challenges for advocates 
of tinkertoy parallel computing. We discuss below these 
challenges in the context of support for adaptive parallel 

computations, and explain how we have tried to address 
them within Zoltan. 

3.1 Functionality 

Selection of services provided by a toolkit is a critical 
design step for toolkit designers. Toolkits should include 
services commonly needed by applications. Services should 
remain independent of each other as much as possible 
so that application developers can select and use only the 
tools that they want. In addition, services within a toolkit 
should be related to and complement each other. Toolkit 
developers should fight the urge to incorporate every 
possible service, so that toolkits do not become too large and 
difficult to use (and, indeed, start resembling frameworks). 

As an example, efficient parallel implementation of 
adaptive applications requires dynamic load balancing to 
redistribute work to processors after adaptive refinement 
occurs. Dynamic load balancing involves both the 
computation of a new partitioning of data and workload, and 
movement of data to new processors. Moreover, dynamic 
data redistribution creates new needs for applications as 
they dynamically delete and insert data in their data 
structures, relocate needed off-processor data and build 
new communication patterns. The Zoltan toolkit includes 
functionality to address many of these related needs. 

Zoltan’s main utility is a suite of dynamic  
load-balancing algorithms that compute new distributions of 
data to processors. Since dynamic load balancers must run 
side-by-side with applications, Zoltan is implemented in 
parallel and is scalable in both execution and memory 
usage. For load balancing, it takes an existing distributed 
partition as input and computes a description of the new 
partition in terms of objects to be transferred between 
processors. Many of the partitioning algorithms are 
incremental, that is, small changes in processor workloads 
result in only small changes in the resulting decompositions. 
Zoltan’s partitioning algorithms support non-uniform 
partition sizes and unequal numbers of partitions and 
processors. Additional utilities that compute which 
processors’ partitions intersect a given point or region in 
space are provided for geometric partitioning methods; 
these utilities are key kernels of parallel contact  
detection simulations (Brown et al., 2003; Koteras and 
Gullerud, 2003). 

After obtaining the map of a new decomposition, 
applications must move data from their old processors to 
their new processors. This data migration requires  
deletions and insertions from the application data structures, 
along with communication between the processors.  
A general-purpose toolkit like Zoltan can do little to help 
with the manipulation of application-specific data 
structures. However, because Zoltan has knowledge of both 
the old and new partitions, it can communicate object data 
among processors easily. In fact, by using user-supplied 
functions to pack and unpack data into communication 
buffers, Zoltan’s data migration tools can perform all 
communication necessary to send data to their new 
location. 
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Zoltan’s distributed data directories (based on the 
rendezvous algorithm of Pınar and Hendrickson (2001)) 
provide additional functionality related to dynamic data 
redistribution. After repartitioning, for example, a processor 
may need to rebuild ghost cells and lists of objects to be 
communicated; it may know which objects it needs, but 
may not know where they are located. By using Zoltan to 
locate this off-processor data, processors register data along 
with their processor numbers in a directory that is 
distributed evenly across processors in a predictable way 
(e.g., a linear decomposition of the data or a hashing of 
data to processors). Then, other processors obtain the 
processor number of a given object by sending a request 
for the information to the processor holding the directory 
entry. Thus, communication cost for look-ups is constant 
and total memory usage is linear in the amount of data 
(each registered object requires storage for approximately 
seven integers). Moreover, since the directory is 
distributed, no communication bottlenecks develop  
(as they would for a directory located completely on one 
processor). 

The Zoltan toolkit provides further capability to 
dynamic applications with complicated and/or changing 
communication patterns. For example, multiphysics 
simulations and crash simulations may require complicated 
communication patterns to transfer data between 
decompositions for different simulation phases. To simplify 
this communication, Zoltan provides an unstructured 
communication package that generates a communication 
‘plan’ with information about sends and receives for a given 
processor. The plan may be used and reused throughout the 
application, or it may be destroyed and rebuilt when 
communication patterns change. Simple communication 
primitives in the toolkit insulate users from details of 
sends and receives. 

Similarly, memory usage in dynamic applications can 
change throughout the simulation. After repartitioning, for 
example, new memory is needed for imported data and 
exported data’s memory is freed. Memory leaks are common 
in developing software. While there are many software 
development tools that enable users to track memory bugs 
(http://www.rational.com; Seward and Nethercote, 2003), 
these tools are often not available on state-of-the-art parallel 
computing platforms. Thus, Zoltan provides basic  
in-application memory-debugging tools that are simple 
wrappers around memory allocation routines. The 
wrappers record information (e.g., line number and file 
name) about memory operations, allowing developers to 
track memory leaks and print memory-usage statistics. 

While these related tools operate well together, an 
important feature of Zoltan’s toolkit design is separation 
between tools. Application developers can use only the tools 
they want; for example, they can use Zoltan to compute 
decompositions but perform all data migrations themselves. 
They can build Zoltan distributed data directories that are 
completely independent of load balancing. They can use 
Zoltan’s unstructured communication tools within statically 
balanced applications or they can use Zoltan to perform 

all the data management tasks associated with load 
balancing. In this way, Zoltan provides full service for 
dynamic partitioning, while allowing developers the 
flexibility to use Zoltan’s tools in a variety of ways–even 
ways not originally envisioned by Zoltan’s designers. 

3.2 Portability 

A toolkit is useful to a broad community only if it is portable 
across many platforms. In addition to allowing toolkit use 
on many current architectures, portability allows the toolkit 
to be used across generations of machines. Developers are 
more apt to be willing to use toolkits if they know that the 
software will continue to work as machines are upgraded 
or replaced. 

To ensure portability, toolkits must rely on standards 
as much as possible. They should use only standard 
language features, to prevent compilation difficulties. Since 
many cutting-edge language features are not supported by 
older compilers, toolkits should include code that is as 
simple as functionally possible. Toolkit dependence on 
other libraries should be kept to a minimum; few things 
are more frustrating than trying to build a toolkit only to 
discover that many other libraries must be located, 
purchased, downloaded and/or installed first. Necessary 
dependencies should take advantage of ‘standard’  
libraries (MPI, 1995; MPI-2, 1997; OpenGL (Segal and 
Akeley, 2003; BLAS, 2001), etc.) as much as possible. 

The Zoltan toolkit is implemented in ANSI C, with an 
optional Fortran90 interface available. It uses MPI for all 
communication; it can use any version of MPI and has been 
tested using MPICH, LAM and system-specific MPI 
libraries for IBM, DEC and Intel architectures. To use 
Zoltan’s graph partitioners, applications must link with 
Zoltan and either ParMETIS (Karypis et al., 2003) or 
Jostle (Walshaw et al., 1997; Walshaw, 2002); a 
compatible version of ParMETIS is distributed with 
Zoltan to simplify building and configuring both libraries. 
However, if graph partitioning is not needed, dependence 
on ParMETIS and/or Jostle can be excluded from Zoltan. 

3.3 Easy-to-use interfaces 

Toolkits’ capabilities should be easily accessible by many 
different applications. To accomplish this goal, several 
features are needed. There should be separation between the 
application and toolkit data structures so that toolkit use is 
not restricted to a particular application. Toolkits should 
have simple interfaces that do not require extensive 
programming by the application developer. And toolkits 
should fit easily into both existing and new applications, 
allowing application developers to retrofit and update their 
existing codes. 

Separation between application and toolkit data 
structures is achieved through data-structure neutral toolkit 
design. In a data-structure neutral design, details of the 
toolkit data structures are hidden from the application and 
vice versa. Thus, the toolkit does not impose data structures 
upon an application as frameworks do. This separation can 
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be achieved in several ways. Some toolkits (e.g., ParMETIS 
(Karypis et al., 2003) and Jostle (Walshaw, 2002)) require 
the application to build specific data structures (e.g., graphs) 
for them to use. While this requirement is acceptable, it 
has the drawback that data-structure changes in the toolkit 
require changes to both the toolkit interface and 
application. It also burdens the application programmer 
with the task of creating a complex data structure, and it may 
incur a significant memory overhead if the library  
creates yet another copy of the data structure. Other  
toolkits (e.g., Trilinos (Heroux et al., 2003; Heroux and 
Willenbring, 2003)) provide an object interface  
(e.g., a matrix) and methods for performing operations on 
the objects (e.g., transposition). This interface allows 
greater code hiding than the previous approach. 

The Zoltan toolkit uses a callback function interface in 
which Zoltan calls user-supplied functions to obtain needed 
application data. The functions answer questions like, ‘How 
many data items are owned by this processor?’ and ‘What 
are the geometric coordinates of the data items on this 
processor?’ The application developer must provide simple 
functions that answer these queries. Then, Zoltan calls the 
functions to build appropriate data structures for the 
particular tool requested. This approach has several 
advantages in terms of both ease of use and ease of 
maintenance. First, once application developers implement 
the callback functions, they can access all technology within 
Zoltan without additional construction of data structures; as 
new capabilities are added to the toolkit, users can access 
them with little effort. Second, by not requiring users to 
build data structures for them, Zoltan developers can use 
the most efficient data structures for their algorithms and 
can improve them without impacting the applications. 

Third, the user interface remains unchanged regardless of 
any internal changes in Zoltan, allowing users to upgrade 
versions of Zoltan with no change to their applications. 
Finally, at no time does the application developer have to 
build (or debug!) complicated data structures for use within 
Zoltan. 

Toolkit interfaces should be simple to understand and 
utilise for users with various levels of interest and expertise. 
Only a small set of functions should be needed to invoke the 
toolkit’s basic capabilities; additional functions can be 
provided to support more advanced features. Parameters can 
be used to control toolkit functionality, but reasonable 
default values should be provided. With this layered design, 
amateur users can benefit from the basic toolkit 
functionality, while more advanced and interested users can 
experiment with a broader range of options. Zoltan uses 
only a small set of callback functions and makes them easy 
to write by requesting only information that is, in general, 
easily accessible to applications. For the most basic 
partitioning algorithms, Zoltan requires only four callback 
functions; these functions return the number of objects 
owned by a processor, a list of weights and names for 
owned data, the dimensionality of the problem and the 
coordinates of a given owned object. More sophisticated 
graph-based partitioning and matrix-ordering algorithms 

require only two additional callback functions, returning the 
number of edges per data object and edge lists for data 
objects. All algorithms have parameters that can alter the 
algorithms’ performance and results; default values are set 
to reflect the most common scenarios for algorithm use. 

Toolkits should be easy to use in both new 
applications and existing ones. When toolkits allow 
individual tools to be used independently, application 
developers can incorporate the toolkits incrementally into 
their applications. For example, an application developer 
may replace a load-balancing scheme in an existing dynamic 
application with a partitioning algorithm from Zoltan, but 
continue using the data migration code previously written 
in the application. 

3.4 Added value 

Since toolkits are most often implemented by researchers 
in the areas addressed by the toolkit, they can provide high 
performance implementations of state-of-the-art algorithms. 
Thus, by using toolkits, application developers can focus 
on their particular areas of interest, rather than concern 
themselves with every detail of the parallel simulation. 
Instead of trying to understand the state of the art in every 
field, they can concentrate on research in their own field. 
Likewise, they can provide valuable user feedback to 
toolkit developers, creating a synergy that benefits both 
application developers and toolkit researchers. 

Toolkits can also add value to applications by 
providing a number of different algorithms whose 
effectiveness can be compared within an application. For 
example, there is no single partitioning strategy that is 
effective for all parallel computations. Some applications 
require partitions based on only the workloads and 
geometry of the problem; others benefit from explicit 
consideration of dependencies between objects. Some 
applications require the highest quality partitions possible, 
regardless of the cost to generate them; others can sacrifice 
some quality as long as new partitions can be generated 
quickly. Most importantly, an application developer may not 
know in advance which strategy works best in his 
application. By providing a collection of algorithms and a 
convenient way to compare them, toolkits can significantly 
improve application performance with little additional effort 
required by application developers. By facilitating easy 
algorithmic comparisons, toolkits also help advance 
algorithmic research. 

In the Zoltan library, we have included a suite of 
parallel partitioning algorithms. Three classes of algorithms 
are provided: geometric bisection, space-filling curves and 
graph partitioning. Within each class, several different 
algorithms are implemented. Geometric algorithms include 
Recursive Coordinate Bisection (Berger and Bokhari, 1987) 
and Recursive Inertial Bisection (Taylor and Nour-Omid, 
1994). Space-filling curve partitions are generated  
via a binned Hilbert Space-Filling Curve algorithm  
(Devine et al., 2005; Bauer, 2002), Octree partitioning  
(Loy, 1998; Gervasio, 1998; Campbell et al., 2003) or a 
Refinement Tree Partitioning algorithm designed especially 
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for adaptive mesh refinement applications (Mitchell, 1995, 
1998). Graph partitioning is provided through easy-to-use 
interfaces to ParMETIS (Karypis et al., 2003) and Jostle 
(Walshaw, 2002). Once users write the callback functions 
for each class, switching between classes and methods 
requires only a single-parameter change with the new 
algorithm name. In this way, developers can compare 
algorithms easily within their applications to find the 
strategy that works best for them. 

3.5 Low overhead 

The performance obtained using a toolkit will almost never 
be as high as the performance of an equivalent algorithm 
embedded directly within an application. Data separation 
and general application interfaces require additional 
memory use and computation time for creating toolkit data 
structures. However, with careful design, this overhead  
can be kept acceptably low; the additional cost can be 
tolerated when the application benefits from toolkit 
functionality. 

The amount of overhead that can be tolerated depends, 
of course, on the application’s use of the toolkit. Greater 
overhead can be tolerated if the tools are invoked 
infrequently. However, since we expect dynamic load 
balancing and its related functionality to be executed 
frequently during a simulation, low overhead is important in 
Zoltan. Multiple versions of many callback functions  
(e.g., list-based functions that return arrays of data vs. 
iterator functions that return one data item at a time) are 
provided to applications, allowing application developers to 
pick the interface most suitable for their data structures. 
Callbacks allow Zoltan’s algorithms to directly build  
the data structures they need; no intermediate data 
structure is used. The callbacks also allow the 
algorithms to obtain only the data they need; for  
example, geometric algorithms do not require graph 
information and, thus, do not obtain that information from 
the application. 

Table 1 provides evidence that Zoltan’s callback 
function interface adds only a small overhead to a 
simulation. Experiments using several Zoltan partitioning 
algorithms were run using the mesh-based driver 
application distributed with Zoltan. Two types of overhead 
are measured: the overhead associated with calling the 
user-specified callback functions (e.g., to obtain coordinate 
or graph information) and the overhead associated with 
building the data structures needed for load balancing. 
While the callback function overhead would not exist if the 
load-balancing algorithms were embedded directly in the 
applications, most of the overhead needed to build data 
structures for load balancing would still be incurred. Cases 
where the application could use exactly the same data 
structures for computation and partitioning are rare; for 
example, few applications’ computations use as their native 
data structure the compressed, distributed graph structure 
commonly used in graph partitioning. Thus, the overhead  
of building the data structures cannot be completely 
disregarded for embedded partitioning algorithms. 

Table 1 Overheads incurred when using Zoltan in a 3D  
mesh-based application. Overhead is reported both in 
seconds and as a percentage of total partitioning 
time. Callback overhead is the time spent in 
callback functions; this time is unique to Zoltan. 
Build overhead includes time spent constructing 
load-balancing data structures; this time would 
most likely be incurred by applications using 
embedded load balancing 

 RCB HSFC 
ParMETIS 
PartKWay 

Callback time 0.038 (4.4%) 0.037 (8.7%) 0.096 (3.6%) 

Data-structure build 
time 

0.066 (7.7%) 0.059 (14.0%) 0.288 (10.7%) 

Total partitioning time 0.865 0.423 2.674 

In the experiments, a three-dimensional, unstructured finite 
element mesh with about one million elements was 
randomly distributed on 16 processors. New decompositions 
were computed using three of Zoltan’s partitioning 
algorithms: Recursive Coordinate Bisection (RCB), Hilbert 
Space-Filling Curves (HSFC) and a graph-based method 
(ParMETIS PartKWay). The time reported in the table is 
just that associated with the partitioning itself. Once the 
partitioning has been computed, additional time will be 
required to migrate data and to update the data structures on 
each processor. In our experience, these latter operations are 
several times as costly as the partitioning itself, yet they are 
independent of the use of a toolkit. This further reduces the 
significance of the overhead times in the table. 

The time spent in callback functions, time spent 
building data structures (including the callback-function 
time) and total partitioning time (including both callbacks 
and data-structure construction) were measured. The 
geometric algorithms, RCB and HSFC have similar amounts 
of overhead, since they both use only geometric information 
about data to be partitioned. Because the graph-based 
partitioner requires more application data (e.g., the edge lists 
for each graph vertex) and more complicated data 
structures (i.e., a distributed graph), its overheads are 
somewhat higher. Still, for all algorithms, the callback 
overhead is less than 9% of the total partitioning time. 
Similarly, the time required to build data structures is less 
than 15% of the partitioning time for all three algorithms. 
And as discussed above, this time is likely to be required 
even by embedded partitioning implementations. 

As the table indicates, geometric partitioners are 
often faster than graph-based partitioners. However, there 
may be compensating differences in partition quality. The 
goal of this table is to merely quantify the overhead 
associated with the use of Zoltan and not to compare the 
merits of different partitioning strategies. 

We must emphasise that the overhead incurred in using 
Zoltan can vary depending upon the application and its 
implementation of the callback functions. If the application 
gives Zoltan expensive implementations of callback 
functions, the callback-function overhead will, of course, 
increase. 
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3.6 Support 

Convincing application developers to use someone else’s 
code is often a difficult proposition. Their reluctance is 
understandable, as they cannot always ascertain the quality 
of outside code, and they have justifiable worries about 
long-term maintenance and development. In this regard, 
toolkits are more attractive than frameworks, because the 
commitment of an application developer is less with the 
former than the latter. But, although reduced in significance, 
support issues are still important. Toolkit designers can help 
ease these concerns in several ways. First, open-source 
distribution of toolkit software allows users to study and 
experiment with the software. A number of open-source 
licenses are available with varying levels of protection for 
toolkit developers (http://www.opensource.org/licenses 
/index.php). Zoltan is distributed using the GNU Lesser 
General Public License (http://www.gnu.org/copyleft/ 
lesser.html), which allows free use of Zoltan software and 
guarantees that redistributions of Zoltan are also free. 
Second, toolkit developers must provide documentation for 
their software, with user’s guides describing functionality 
and options. User’s guides should provide detailed 
descriptions of capabilities, options, interfaces and 
configurations, and should include usage examples 
whenever appropriate. Zoltan’s hyperlinked, web-based 
User’s Guide (Devine et al., 1999a) has proved to be 
useful both to users and Zoltan developers. Third, simple 
codes using the toolkit can be distributed with the toolkit. 
While allowing users to verify their toolkit installation, 
these codes serve as examples that application developers 
can study in learning to use the toolkit. Most toolkit 
developers have such programs available for their own 
testing; including the examples with the toolkit distribution 
takes little additional effort. For example, code, instructions 
and sample inputs and outputs for the Zoltan regression test 
programs are included in the Zoltan distribution. And 
finally, the promise of customer support from toolkit 
developers encourages application developers to give 
toolkits a try. 

4 Future work 

The difficulty of software development continues to be a 
principal impediment in the adoption of high-performance 
computing. It is our belief that well-executed toolkits will 
play a growing role in addressing this problem. Although 
they provide less support than full-fledged frameworks, 
toolkits have the advantage of greater flexibility and 
incremental adoption. But toolkits never can address the 
detailed manipulation of application-specific data 
structures. Thus, we anticipate a continuing need for 
frameworks and hope for a decline in the heroic but 
inefficient practice of all-in-one application development. 
We look forward to a day when the community has built a 
diverse set of toolkits with clean interfaces, and application 
developers can mix and match them like tinkertoys to build 
complex yet high-performing applications quickly. 

We feel that Zoltan offers an attractive model for toolkit 
development. It provides a diverse set of related 
services via a simple interface and low overhead in 
both memory and runtime. We continue to add 
functionality to Zoltan including support for heterogeneous 
parallel architectures and alternative models of load 
balancing. However, in doing so, we are constantly facing 
choices about the appropriate breadth of functionality of 
the toolkit and about the complexity of the interface. In 
our experience, good toolkit development requires both 
discipline and humility. We want to avoid adding 
functionality capriciously, and to focus on the areas in 
which we are best able to provide novel support to 
application developers. 

We hope that the proven success of Zoltan will attract 
attention to the promise of tinkertoy parallel programming. 
More specifically, we hope to persuade others to build 
additional toolkits with complementary functionality, and to 
convince application developers of the promise this approach 
has in the development of more, and more complex, 
simulation codes. 
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